MIN_MAX_NORM_CVIP
min_max_norm_cvip() -applies min-max normalization to set of feature vectors in a matrix.
Contents
SYNTAX
a = min_max_norm_cvip(vector, s_min, s_max)
Input parameters include :
- vector - An m by n numerical matrix where m is the number of vectors and n is the length of each row vector.
- s_min - The min parameter in Min-Max normalization.
- s_max - The max parameter in Min-Max normalization.
Output Parameter includes :
- a - A matrix with the same size as the input 'vector' , where each column(feature vector) is normalized using Min-Max.
DESCRIPTION
This function assumes each row of the matrix vector corresponds to the features of an object. It then normalizes each column using the min-max normalization method.
REFERENCE
1. Scott E Umbaugh. DIGITAL IMAGE PROCESSING AND ANALYSIS: Applications with MATLAB and CVIPtools, 3rd Edition.
EXAMPLE
% Input vector vectors = randn(13,6); % minimun parameter s_min = 0; % maximum parameter s_max = 1; % calling function a = min_max_norm_cvip(vectors, 0, 1)
a =
    0.4171    0.4529    0.3286    0.6077    0.1064         0
    0.7382    0.9429    0.5904    0.4777    0.4367    0.0508
    0.7048    0.1654    0.5235    1.0000    1.0000    0.7561
    0.2574    0.0318         0    0.2665    0.5740    1.0000
         0    0.2659    0.4800         0    0.9420    0.6271
    0.6822    0.5087    0.6478    0.2361    0.6802    0.5926
    0.3002    0.2032    0.5899    0.5772         0    0.4476
    0.7438    1.0000    1.0000    0.7908    0.6015    0.8639
    0.5784         0    0.6623    0.1335    0.6786    0.8809
    1.0000    0.6610    0.5356    0.3567    0.3982    0.3817
    0.3772    0.6664    0.0511    0.6758    0.9196    0.4176
    0.8259    0.4876    0.5362    0.4892    0.3012    0.6032
    0.7451    0.9433    0.6975    0.4852    0.5542    0.1639
CREDITS
Author: Mehrdad Alvandipour, March 2017
Copyright © 2017-2018 Scott
E Umbaugh
For updates visit CVIP Toolbox Website