PCT_CVIP
pct_cvip() - performs the pricipal component transform in RGB space.
Contents
SYNTAX
[outputImage,EigenVector,EigenValues] = pct_cvip(inputImage);
Input parameters include:
- InputImage - RGB Image
Output parameters include:
- outputImage - The PCT transformd Image.
- EigenVector - Eigen Vectors of the covariance matrices.
- EigenValues - Eigen Values of the covaraince matrices.
Note: Mandatory output arguments: outputImage and EigenVector Optional output arguments: EigenValues
DESCRIPTION
This function converts the input image from the RGB color space into the Principal Component Transform color space. The Principal Components Transform decorrelates the RGB data by finding a linear transform to align the coordinates axes along the path of maximal variance of the data. The decorrelated data is put into the principal component band i.e., band 1.
To view the 8-bit image of type double, divide by 255. To view the 16-bit image of type double, divide by 65535.
REFERENCE
1. Scott E Umbaugh. DIGITAL IMAGE PROCESSING AND ANALYSIS: Applications with MATLAB and CVIPtools, 3rd Edition.
EXAMPLE
% Read image X = imread('Car.bmp'); % Call function [S1, E, e] = pct_cvip(X); % Display input image figure;imshow(X);title('Input image'); % Display output images figure;imshow(remap_cvip(S1),[]);title('Output image after pct');
CREDITS
Author: Deependra Mishra, March 2017
Copyright © 2017-2018 Scott
E Umbaugh
For updates visit CVIP Toolbox Website